Modelling enteric methane emissions in UK dairy herds milking the farm data

Tom Chamberlain, MRCVS MRes student

Results from preliminary data (150 herds, 37k cows)

Methane – what's the problem?

- Methane is a powerful green house gas
 - COP26 (Glasgow, 2021)– Pledged 30% reduction by 2030
- Methane x86 more potent than CO2 (GWP*)
- Methane is 51% of carbon footprint on dairy unit
- Most (73%) methane from enteric fermentation

Contributions to carbon footprint for high yielding dairy herd (CIEL 2020)

Possible mitigation solutions

- Feed additives NOP/Bovaer, Silvair, Rumitech
 - Available on international market, cost 1 2 ppl, antimicrobial
 - Also Seaweed, etc in development.
 - 10% to 30% reduction on emissions
- Genetics 10 15 year to get national impact
- Others fitted devices, boluses to time drug release, etc
- Generally
 - Limited on-farm testing, deployment, uptake slow adoption
 - Who pays? private cost cf public good
 - These are NEW = Unforeseen problems (AMR, side effects, etc.)

Will improving efficiency help?

- More milk per cow per day of life
 - dilution of methane production impact
 - -? How big is this effect
- Look at lifetime production
 - Lifetime methane production / lifetime milk yield
- Look at variation between herds in UK national herd
 - Will show range that is achievable
 - Uses existing technologies
 - no development, implementation, uptake barriers and delays
 - Improving efficiency should improve farmer's gross margin (GM) and possibly profit.

The data source- milk recording data

- Three companies in UK NMR (52%) CIS (44%) QMMS (4%)
 - Data + milk collected monthly by company (impartial)
 - Uniform structure, complete (much can be verified through biology)
 - All adhere to international standards (ICAR)
 - Overall high quality, very complete data set
 - Biased towards 'better', more proactive farms
 - Data is freely available
- Full data set size
 - ~365 herds, 89K cows, 609M litres/year
- Preliminary dataset
 - -~168 herds, 40K cows

OEE - Overall Equipment Effectiveness measure of factory machine efficiency

- Time + resources taken to build machine
- Level of production when working
 - Quality of product
 - Defective product
- Service intervals down time
- Life span production runs

- Age to first calving
- Lactation length and milk yield
 - Butterfat, protein, SCC
 - Milk discarded
- Length of dry period
- Lifespan culling patterns

The data

- Births, deaths, calving, dry off dates
- Daily Milk yields + quality recorded every month
- Can determine what a cow does every day of her life and when cows are culled
- OEE inspired approach
 - Gold sections are productive, others 'non-productive'

Pre-analysis perceptions

- Methane output linked to
 - 1. Age at first calving (CEIL, 2020)- delays start of 'productive period'
 - 2. Milk yield dilution of maintenance (and ration differences)
 - 1. Corrected for fat and protein
 - 3. Calving interval dilutes time spend as non-productive dry cow
 - 4. Simple overall culling rate % of herd leaving each year
 - 1. Number of productive cycles
 - 5. Average age of cows at culling
 - 1. Better captures culling patterns
 - 2. Cows culled at L=1 more detrimental than culled at L=5

This is the base (vanilla, nvars=5) model

Modelling assumptions

- Model Domain = weaning (8wks) to leaving farm at culling
- Work at cow-life time scale
- Assume (over lifetime when include DLWG)
 Energy requirements = energy supplied
- Energy (ME) modelled using AFRC 1990 (TCORN)
 - Covers all production stages later models don't eg FiM
 - Can use a factorial approach (maintenance, DLWG, milk, pregnancy)
 - Calculate ME/day required for every day of life
- Predict methane from ME intake (Ellis, 2007)
 - CH4 (MJ day) = 4.12 + (0.0901 x ME.intake) [MJ/day] for all cattle RMSPE = 28.2%

Results - EDA

- Mean herd size 250
 cows
 - Slightly larger than other data sources

- Age at first calving
 - Target = 24 months
 - many herds exceed target

Results - EDA

- Calving Interval
 - Generally higher than target (365 days)
 - Many tools available to control
- Culling rate
 - Some VERY high
 - ? TB, retirement, etc.
 - Pruned from data base
 - High butter fat also pruned
 - Probably Channel Island herds

Culling rate (% of herd/year)

Results - EDA

Average lactation number when leave herd

136 herds - as at 24July24

Modelled methane emissions

168 herds

- Typical long left tail.
- IQR = 0.12 kg
 - 13% reduction
- IDR = 0.24 kg
 23% reduction
- Comparisons
 - Bovaer ~30%
 - Silvair ~ 10%
 - Rumitech ~10-15%
- Efficiency gains are in same 'ball park' and should be synergistic

kg enteric methane per kg milk (over lifetime)

20-15-HAU main herds 10-5 -0 -0.8 0.9 1.2 1.0 1.1 1.3 kg methane per kg milk (over lifetime) Percent of herds in dataset that have a value lower than this farm = 24

Quantile	10%	25%	50%	75%	90%
kgCH4/kg FPCorr Milk	0.82	0.85	0.90	0.97	1.06

Predicting methane emissions Vanilla model

- Simple regression [Im]
- Single run
- No validation(see later)
- Base line RMSE = 0.033

 2 Can this be bettered
 2 effect of noise in data
- Milk yield dominates
 - Can we look at residuals to model constant milk yields.
 - Cf 'Residual feed intake'

Regression	F value	F df P		Adj	RMSE
				R2	
Annual	449.4	1,152	<0.001	0.746	0.050
FPCMY					
AAFC	35.0	1,152	< 0.001	0.182	0.090
(months)					
CI	1.07	1,152	0.303	0.000	0.099
Culling	3.22	1,152	0.075	0.014	0.099
avLact	1.00	1,152	0.317	0.000	0.099
OnLeaving					
All five	235	5,148	<0.001	0.884	0.033

Validating vanilla model

- Test:train [50:50] -77 obs in each set
- Train set

-F = 121.8 (df 5,71), p<0.0001, adj R2 = 0.8882, RMSE = 0.033

Predict for test set (n=77)

Train:test validation

	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Mean
RMSE train	0.0333	0.0333	0.0333	0.0333	0.0333	0.0333	0.0333
RMSE test	0.0381	0.0334	0.0359	0.0302	0.0383	0.0343	0.0350
Dotorioration						F 70%	

J.Z% Detenuiation

Random forest assessments (ntrees=1000)

- 1. The 'kitchen sink' data set (nvar = 25)
- 2. Prune out annual MY and some non-relevant vars (n=20)
- 3. Remove all yield variables (n = 15)
- 4. My best selection (n = 18)
- 5. Extended Vanilla data set (incl cull by lactation number) (n=12)
- 6. Vanilla set (n = 5)

Assessing RF models

- Yield related variables dominate in both models
- 'best selection'
 - Removed some 'derived' variables
 - AAFC coming through
 - Detailed culling
- How to develop these into a stand alone model?

etimeYieldKgDay	d	lifetimeYieldKgDay	d	
roductiveLifetimeYieldKgDay		productiveLifetimeYieldKgDay	••••••	
nnualMY		annualMY	•••••	
nilkProteinAnnualKg	0	milkProteinAnnualKg	•••••	
nnualMYFPCM	0	annualMYFPCM		
nilkLifeDays	0	BFAnnualKg	••••	
FAnnualKg	•••••	milkLifeDays	o	
ull_L1	0	costAAFC	o	
otalLifeDays	o	Cull_L1	o	
ostAAFC	p	Cull_L3	o	
			[
	5 20 35	().0 0.3	
	%IncMSE	I	ncNodePurity	1

RF04 - my best selection nvars = 18

lifetimeYieldKgDay productiveLifetimeYieldKgDay annualMYFPCM avLactOnLeaving milkLifeDays AAFC totalLifeDays		lifetimeYieldKgDay productiveLifetimeYieldKgDay annualMYFPCM AAFC Cull_L3 Cull_L4 Cull_L6	
Cull_L4	0	herdSize	0
Cull_L3 Cull_L1	o	Cull_L1 milkLifeDays	o
	10 30		0.0 0.3
	%IncMSE		IncNodePurity

Random forest comparisons

- Big RF's did better
- Yield is important!
- Smaller RF's not as good as simple LM
- BUT: is LM overfitted
 - Se later
- How to deploy RF outside 'R'?
 Need to create a deliverable

How to find the best model

- Want to apply model outside R
- Linear model 5 variables. Train:test [50:50]

Train:test validation

	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Mean
RMSE train	0.0333	0.0333	0.0333	0.0333	0.0333	0.0333	0.0333
RMSE test	0.0381	0.0334	0.0359	0.0302	0.0383	0.0343	0.0350

Deterioration 5.2%

• Best subset – in progress

• Other ideas please

Best subsets

- Used 'best selection' data set
- BIC minimal and elbow at 4 or 5 variables
- Backward
 - annualMYFPCM
 - Cl
 - avLactOnLeaving
 - lifetimeYieldKgDay
- Forward
 - annualMYFPCM
 - Cl
 - avLactOnLeaving
 - lifetimeYieldKgDay
 - Cull_L3
- Cross validation [50:50] of 5 component model
 - Full data set
 - F=332 (df 5,148), adj R2=0.916, p<0.0001
 - RSME = 0.0284
 - Validation deterioration 11.5%

Backward

Train:test validation							
	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Mean
RMSE train	0.0296	0.0264	0.0273	0.0280	0.0297	0.0256	0.0278
RMSE test	0.0277	0.0310	0.0310	0.0310	0.0289	0.0361	0.0310

Further work

- Use full data base ~350 400 herds
- Other regression models, etc. but needs to be simple to apply
- Can put costs (GM ish) to changes in major KPI's
 - AAFC, CI, MY, culling rate
 - Relate GM cost savings to fall in methane production (kg/kg)
 - ? Get a win:win , profit positive situation.
- Develop farmer-friendly interface
 - 'improve this KPI and your CH4 footprint falls this much'
 - Will this be seen (by farmers) as another 'farmer bashing' tool?
- Look at predicted eMethane at the cow level
 - Could have 40k cull records (11k so far from 100 herds)
 - Does this relate to genomic test results?
 - Can we selectively breed for cows with a low eCH4/kg milk score?
 - Develop a specific SNP-key for longevity, low methane potential?
 - ??Innovate UK consortium project